If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-30x+105=0
a = 2; b = -30; c = +105;
Δ = b2-4ac
Δ = -302-4·2·105
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{15}}{2*2}=\frac{30-2\sqrt{15}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{15}}{2*2}=\frac{30+2\sqrt{15}}{4} $
| x2-2=23 | | 11x/20+75=11x/20 | | 11x/20+75=x | | 2x^2+4x-82=0 | | x(7x+2)=-6 | | (1/4)x-10=6 | | x*0.03=500000 | | 85+9x=10x | | 5x+70+15x=180 | | 3x^2+6x=58 | | 5(x-1)=3x-10 | | (x-3)-3=13 | | 3.9a=31.2 | | x=11.20-(1.12*8)+1.12 | | (10-y)/3y2=0 | | (5x+15)(x-4)=0 | | 9x8=10x8-1x | | 6n-11=n+4 | | 9^3x+6x=4 | | T=14.11t= | | 69+5x=0 | | 12=260/x | | (97-3x)=0 | | b+7=8/3 | | 2-x=17-4x | | 200=p^2 | | (5/8)x+(1/5)x=66 | | (4/5(15x-1)=-8) | | 2x(x+96)=69(x+96) | | 3x+30=12-7x | | 4x-2x+10=3 | | 3x-15=5x-7 |